$0(\bmod 4)$. On the other hand:

$$
\begin{aligned}
\Sigma^{*} & =3 \mu m^{2}+d n^{2} \\
& =3 \mu(8 p+1)+d(8 p+1) \\
& =4|\pi+\mu(2 p+1)| \equiv 0(\bmod 4)
\end{aligned}
$$

[where $(8 p+1)$ means 'a multiple of p plus one'], which implies $\alpha_{i}=4$.

Finally when the condition (A2) is fulfilled, α_{i} may be 1 or 4.

Let us now consider the case where the numbers $3 \mu m^{2}$ and $d n^{2}$ are not relatively prime. The existence of a common factor may be obtained from one or more of the following cases (a last case is excluded according to the relation $A 1$):
(i) $(3, d) \div 3$
(iv) $(3, n) \div 3$
(ii) $(\mu, d) \div q$
(v) $(\mu, n) \div p$
(iii) $(m, d) \div t$
$q, p, t \neq t$.

We shall examine every condition (31) as an independent one.
(i) $(3, d) \div 3$. Since $3 \mid d$ and 3 should divide r_{33}^{*} we have $3 \mid 2 w^{2} \mu n^{2}$ which means $3 \mid w$, then we have

$$
\begin{equation*}
3 \mid u^{2}+v^{2}-u v \tag{A8}
\end{equation*}
$$

or $3 \mid v$. The last condition leads to the fact $k=3$ and in particular this k value is a factor of v. The condition (A8) implies $3 \mid(u+v)^{2}-3 u v$ from which we have $u+$ $v \equiv 0(\bmod 3)$. On the other hand, $2 u-v+v+u=3 u$ $\equiv 0(\bmod 3)$ which implies $2 u-v \equiv 0(\bmod 3)$ and also $2 v-u \equiv 0(\bmod 3)$, thus the $r_{i j}^{*}$ elements are of the form $0(\bmod 3)$ which implies $\alpha_{i}=3$. Taking into account the case $\alpha_{i}=4$ which is fulfilled for the conditions u and $v \equiv 0(\bmod 2)$ and m and $n \equiv$ $1(\bmod 2)$ we have that α_{i} may have the value 12 .
(ii) $(\mu, d)=q$. We shall prove that k may have the value q which in particular is a factor of μ. Since $d \equiv$ $0(\bmod q)$ and since $\mu w^{2} \equiv 0(\bmod q)$ from (14) we have

$$
\begin{equation*}
u^{2}+v^{2}-u v \equiv 0(\bmod q) \tag{A9}
\end{equation*}
$$

taking into account the condition (13b). For (A9), if $(u, v) \div 1$ then q may be only 3 , and $k=3$; in particular 3 is a factor of μ. If u and v are not relatively prime then $k=q$ if $(u, v)=q$.
(iii) $(m, d) \div t$. From the r_{33}^{*} element we may see that $t \mid 2 w$. The case $t=2$ implies u and $v \equiv 0(\bmod 2)$ (from r_{12}^{*} and $\left.r_{21}^{*}\right)$ but since $d \equiv 0(\bmod t)$ we have $w \equiv$ $0(\bmod 2)$ which is improper, or $\mu \equiv 0(\bmod 2)$. The last condition implies $k=2$. The condition $t \mid \omega$ together with the condition $d \equiv 0(\bmod t)$ implies $t \mid u^{2}+v^{2}-u v$ or $t \mid v$. The first of these two conditions may be fulfilled if $t=3$ and $(u, v) \div 1$ a known value of α_{i}. Any other condition implies the improper relation $(u, v, w) \div t$. The case $t \mid v$ implies $k=t$ as may be easily seen from (25).
(iv) The condition ($3, n$) $\div 3$ implies $\alpha_{i}=3$ since all the matrix elements become of the form $0(\bmod 3)$.
(v) The condition $(\mu, n) \neq p$ implies $k=p$ since all the $r_{i j}^{*}$ elements become of the form $0(\bmod p)$.

References

Bleris, G. L. \& Delavignette, P. (1981). Acta Cryst. A38, 779-786.
Bonnet, R., Cousineau, E. \& Warrington, D. H. (1981). Acta Cryst. A 37, 184-189.
Friedel, G. (1926). Leçons de Cristallographie. (Reprinted in 1964.) Paris: Blanchard.
hagège, S., Nouet, G. \& Delavignette, P. (1980). Phys. Status Solidi A, 61, 97-107.
Ranganathan, S. (1966). Acta Cryst. 21, 197-199.
Warrington, D. H. (1975). J. Phys. (Paris) Colloq. 36, C4, 87-95.

SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1982). A38, 557-558
Intermolecular energy, structure and stability of regular stacks of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ): erratum. By H. A. J. Govers, General Chemistry Laboratory, Chemical Thermodynamics Group, State University of Utrecht, Padualaan 8, 3508 TB Utrecht, The Netherlands
(Received 18 November 1981; accepted 9 February 1982)

Abstract

Previous calculations of the stack structure of TTF and TCNQ by Govers [Acta Cryst. (1981), A37, 529-535] are corrected for a program error.

New results

During our calculation of the three-dimensional crystalline structure of TTF-TCNQ (Govers, 1982) we met a venomous program error. This error proved important only
© 1982 International Union of Crystallography

Table 2. Intermolecular van der Waals plus repulsive stack energies and structures of regular TTF and TCNQ stacks (corrected)

Stack	Atom-atom potentials*	$E\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \dagger$	$R(\AA)$	$\varepsilon(\AA)$	$\delta(\AA)$	$\chi\left({ }^{\circ}\right)$	$b(\AA) \ddagger$
TTF lsl	Set 1	-55.73 ± 0.08	3.55 ± 0.02	0.05 ± 0.05	1.1 ± 0.3	0.0	3.72 ± 0.12
		-55.3	3.51 ± 0.11	$0 \cdot 12 \pm 0.12$	$1 \cdot 60 \pm 0.2$	0.0	3.90 ± 0.15
ecl	Set 1	-54.39 ± 0.04 §	$3.62 \pm 0.01 \S$	$0 \cdot 0$	$\overline{0.0}$	0.0	3.62 ± 0.01
		-54.5	3.59 ± 0.04	0.0 ± 0.05	0.0 ± 0.05	0.0	3.59 ± 0.04
(ecl)		-56.77 ± 0.04	3.52 ± 0.01	$0 \cdot 0$	$0 \cdot 0$	$\underline{36} \pm 1$	3.52 ± 0.01
TCNQ 1 s		-57.80 ± 0.04	3.46 ± 0.01	0.1 ± 0.1	1.21 ± 0.01	0.0	3.67 ± 0.02
		-55.3	3.30 ± 0.13	0.04 ± 0.04	2.02 ± 0.20	0.0	3.84 ± 0.06
tsl (ecl)	Set 1	$\frac{-53.3}{-57.65}$	$\frac{3.44 \pm 0.05}{3.46 \pm 0.01}$	$\frac{1.01 \pm 0.15}{0.0}$	$\frac{0.16 \pm 0.12}{0.4}$	$\underline{0.0}$	$\frac{3.57 \pm 0.05}{3.48}$
		-57.65 ± 0.4	3.46 ± 0.01	$0 \cdot 0$	0.4 ± 0.1	22 ± 1	3.48 ± 0.01
TTF-TCNQ 1 sl		$\underline{-46.59}$	$\frac{3.557}{3.50}$	$0.24{ }^{\text {c }}$	$\frac{2.824}{}{ }^{\text {¢ }}$	$0^{0.0}{ }^{\text {c }}$	$4.54{ }^{4}$
ecl		-59.04 ± 0.04	3.50 ± 0.01	0.0	$0 \cdot 0$	$0 \cdot 0$	$\overline{3.50} \pm 0.01$

[^0]for the calculations applying set 1 by Govers (1978) with its short summation limits. Therefore all calculations by Govers (1981) which apply set 1 were performed again after correction of the program error.

The new results for set 1 are given in a new Table 2. We remark that also the old Figs. 2(a)-(e) are partly incorrect.

From Table 2 we infer the following corrections for our previous conclusions concerning set 1. The absolute minimum for the TTF segregated stack now is accompanied with the pseudo-eclipsed stack ($\chi=36^{\circ}$). The mixed stack now only shows an eclipsed minimum. However, the local minima, TTF slipped longitudinally and pseudo-eclipsed TCNQ (a new result), are less stable only up to $1 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

The mixed stack now is $1.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ more stable than the mean segregated one.

A comparison of the structural parameters calculated via set 1 with their observed values shows serious deviations of -0.5 to $-0.8 \AA$ for the longitudinal slip, δ.

A comparison of the results obtained via set 1 with those via set 2 now shows a growing consistency. Only the local and absolute minima for TCNQ are interchanged.

References

Govers, H. A. J. (1978). Acta Cryst. A 34, 960-965.
Govers, H. A. J. (1981). Acta Cryst. A 37, 529-535.
Govers, H. A. J. (1982). To be published in Acta Cryst.

International Union of Crystallography

Acta Cryst. (1982). A 38, 558-559

Bibliography of Mathematical Crystallography

For many years Professor W. Nowacki of the University of Bern has kept, for his own purposes, a bibliography of mathematical crystallography. In the late 1970's he agreed to make this generally available to interested crystallographers and it had been hoped that it would have been made available on demand as a booklet. However, in view of the high cost of publication, it has instead been decided to make available photocopies of specific sections of Professor Nowacki's typescript on request. In total there are about 4750 references on 286 pages. The sections are as follows:

Introduction (4 pages - this will be sent with all sections)

1. Point groups (10 pages; 159 references)
2. Space groups of E^{1} ($E=$ Euclidean space) (2 pages; 25 references)
3. Space groups of E^{2} (5 pages; 90 references)
4. Space groups of E^{3} (12 pages; 190 references)
5. Nomenclature, Tables (3 pages; 46 references)
6. Space groups of E^{4} (4 pages; 60 references)
7. Space groups of $E^{n}(n \geq 5)$ (6 pages; 94 references)
8. Theory of representation (with application to physics) (16 pages; 284 references)
9. Subgroups and supergroups (6 pages; 93 references)
10. Lattice complexes and orbits in E^{2} (2 pages; 21 references)
11. Lattice complexes and orbits in E^{3} (5 pages; 77 references)
12. Hauptpunkte i.S. Weissenberg's (1 page; 8 references)
13. Space forms (differential geometry) (2 pages; 31 references)
14. Space partitionings of E^{2} (10 pages; 181 references)
15. Space partitionings of E^{3} (12 pages; 193 references)
16. Space partitionings of $E^{n}(n \geq 4)$ (4 pages; 61 references)
17. Packings of circles (and of other polygons) (2 pages; 25 references)
18. Packings of spheres (and of other polyhedra) (14 pages; 233 references)

[^0]: * Set 1 from Table 1 (Govers, 1978).
 \dagger Results obtained via $\mathrm{kcal} \mathrm{mol}^{-1} \equiv 4.19 \mathrm{~kJ} \mathrm{~mol}^{-1}$ using set 1 (Govers, 1978).
 \ddagger Calculated via (5), except for the experimental values (underlined).
 \S No true minimum; $E(R)$ minimized for an eclipse stack ($\delta=\varepsilon=\chi=0.0$).
 © Value for DMDBTTF-TCNQ.

